BUCHAREST UNIVERSITY OF ECONOMIC STUDIES Council of Doctoral University Studies Doctoral School ECONOMIC INFORMATICS

DESIGNING A PERSONAL LEARNING ASSISTANT BASED ON ARTIFICIAL INTELLIGENCE AND ADAPTIVE LEARNING

Florin – Valeriu Pantelimon

PhD Coordinator: Prof. univ. dr. Răzvan Bologa

București, 2025

Summary

Both technology and its progress influence multiple aspects of modern society, one of them being represented by education and processes that shape it. Therefore, as new technologies continue to emerge, so does the tendency of searching for new ways of including them in different domains with the scope of improving them. As society of our days continues to change, personal characteristics of individuals continue to shift and the efficiency of classic educational processes is now challenged by a more easier access to information and knowledge, decreased attention span and a raise in distractibility.

Therefore, the current research analyzes the potential ways in which new technologies based on artificial intelligence can be integrated into the educational process, improving the students' experience, leading to better results. The research presents statistical analysis regarding the degree of usage of modern educational systems based on artificial intelligence, case studies regarding applications of artificial intelligence in developing innovative educational systems and suggests an architecture of a personal learning assistant based on artificial intelligence that satisfies current students needs and facilitates their progress on a specific learning path.

Table of contents

INTRODUCTION	1
1. LITERATURE REVIEW	5
1.1. INTEGRATION OF ARTIFICIAL INTELLIGENCE IN THE EDUCATIONAL PROCESS	5
1.2. IMPROVING PROGRAMMING ACTIVITIES THROUGH THE USE OF LARGE LANGUAGE MODELS	17
1.3. USING LARGE LANGUAGE MODELS FOR THE DEVELOPMENT OF EDUCATIONAL SYSTEMS	23
2. EVOLUTION OF EDUCATIONAL SYSTEMS BASED ON ARTIFICIAL INTELLIGENCI DURING THE COVID-19 PANDEMIC	
2.1. MATERIALS AND METHODS FOR STUDYING THE EVOLUTION OF EDUCATIONAL SYSTEMS BASED ON ARTIFICIAL INTELLIGENCE DURING THE COVID-19 PANDEMIC	28
2.2. RESEARCH HYPOTHESIS ON THE INCREASE IN THE USE OF INTELLIGENT EDUCATIONAL PLATFORMS DURING THE COVID-19 PANDEMIC	28
2.3. RESEARCH RESULTS ON THE EVOLUTION OF THE USE OF ARTIFICIAL INTELLIGENCE-BASED EDUCATIONAL PLATFORMS	33
2.4. CONCLUSIONS AND FUTURE PROSPECTS	35
3. IMPROVING PROGRAMMING ACTIVITIES USING LARGE LANGUAGE MODELS, A PRACTICAL APPROACH BASED ON CHATGPT37	1
3.1. COMPARATIVE ANALYSIS OF ARTIFICIAL INTELLIGENCE-BASED SYSTEMS WITH PROGRAMMING CAPABILITIES	
3.2. RESEARCH HYPOTHESIS ON HOW LARGE-DIMENSIONAL LANGUAGE MODELS CAN IMPROVE PROGRAMMING ACTIVITIES	43
3.3. MATERIALS AND METHODS USED IN THE STUDY OF INTEGRATION OF LARGE-DIMENSIONAL LANGUAGE MODELS IN PROGRAMMING ACTIVITIES	44
3.3.1. Generating source code	46
3.3.2. Explaining and documenting existing source code	48
3.3.3. Identifying potential errors in source code	50
3.3.4. Developing unit tests	53
3.4. CONCLUSIONS AND DISCUSSIONS ON THE USE OF LANGUAGE MODELS IN PROGRAMMING ACTIVITIES	

		N OF A PERSONAL LEARNING ASSISTANT BASED ON ARTIFICIAL NCE	. 59
4.1. TO C		SEARCH HYPOTHESIS ON THE USE OF LARGE-SIZED LANGUAGE MODE RATE EVALUATION TESTS	
4.2.	AN	ALYSIS ON EXISTING LARGE-SIZED LANGUAGE MODELS	. 60
4.3.	DE	SCRIPTIVE ANALYSIS OF EXISTING ARTIFICIAL INTELLIGENCE-BASED	
EDU	CATI	ONAL ASSISTANTS	. 70
4.4.	PR	ESENTATION OF THE TECHNOLOGIES USED	. 72
4.4	4.1.	GPT-4o and GPT-4o-mini language models	. 72
4.4	4.2.	OpenAI Assistants	. 73
4.4	4.3.	.NET	. 74
4.4	1.4.	SQLite and Dapper	. 74
4.4	4.5.	OpenAI .NET library	. 74
4.5.	GE	NERAL SYSTEM ARCHITECTURE	. 75
4.5	5.1.	Database Structure	. 75
4.6.	AU	GMENTED GENERATION WITH CONTEXT EXTRACTION	. 77
4.7.	LO	ADING KNOWLEDGE BASES	. 78
4.8.	FIL	E ANALYSIS AND LESSON EXTRACTION	. 79
4.9. STR		NERATION OF EVALUATION QUESTIONS AND TESTING PROMPTING	. 81
4.10.	Ţ	JSER INTERFACE	. 87
4.1	10.1.	Home Page	. 87
4.1	10.2.	Document Management	. 88
4.1	10.3.	Test Generation	. 89
4.1	10.4.	Question Review	. 90
4.11.	RE	SULTS	. 93
4.12.	I	ELEMENTS OF ORIGINALITY OF THE PROPOSED ASSISTANT	. 93
4.13.		CONCLUSIONS REGARDING THE PROPOSAL OF A PERSONAL LEARNING	
4.14.		LIMITATIONS	
4.15.		DISCUSSIONS AND FUTURE PERSPECTIVES	
		AL CONCLUSIONS	
J. UI	~ * * * * * * * * * * * * * * * * * * *		. ,,

5.1.	DISSEMINATION OF RESEARCH RESULTS	02
BIBLIO	GRAPHIC REFERENCES1	04
Keywor models.	ds: Artificial intelligence, adaptive learning, personal learning assistant, large language	